

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2021

CC7-MATHEMATICS

RIEMANN INTEGRATION AND SERIES OF FUNCTIONS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any *four* questions:

 $3 \times 4 = 12$

- (a) Use Bonnet's form of second Mean Value Theorem to prove that $\left| \int_{a}^{b} \sin x^{2} dx \right| \leq \frac{1}{a}$; if $0 < a < b < \infty$
- (b) Examine the uniform convergence of the sequence of functions $\{f_n\}_{n \in \mathbb{N}}$ where

$$f_n(x) = \frac{x}{1+nx}, \ x \ge 0.$$

(c) A function f is defined on [-2, 1] by $f(x) = \operatorname{sgn} x$ and $\phi(x) = |x|$. Show that $\int_{-2}^{1} f(x) dx = \phi(1) - \phi(-2)$ although $\phi'(x) \neq f(x)$ on [-2, 1].

(d) If a function f is continuous on [a, b], $f(x) \ge 0$ on [-2, 1] and $\int_{a}^{b} f = 0$. Prove that

 $f \equiv 0$ on [a, b] identically.

(e) Let $f_n(x) = nxe^{-nx^2}$, $n \in \mathbb{N}$ and $0 \le x \le 1$. Determine whether

$$\lim_{n\to\infty}\int_{0}^{\infty}f_{n}(x)dx=\int_{0}^{1}\left\{\lim_{n\to\infty}f_{n}(x)\right\}dx$$

(f) Examine if the trigonometric series $\sum_{n=1}^{\infty} (\sin nx + \cos nx)$ is a Fourier series in $[-\pi, \pi]$.

GROUP-B

Answer any *four* questions $6 \times 4 = 24$

2. Represent f(x), where $f(x) = \cos px$, $-\pi \le x \le \pi$ (*p* is not being an integer) in 3+3 Fourier series. Deduce that $\frac{\pi}{\sin px} = \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{n+p} + \frac{1}{n-p+1}\right)$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC7/2021

3. For each
$$n \in \mathbb{N}$$
, let $f_n(x) = nx^2$, $0 \le x \le \frac{1}{n}$ and $f_n(x) = x$, $\frac{1}{n} < x \le 1$. $2+2+2$

(i) Show that the sequence $\{f_n\}$ converges to a function f on [0, 1].

(ii) Find
$$M_n$$
 where $M_n = \sup_{n \in [0,1]} |f_n(x) - f(x)|$

1

(iii) Show that $\{f_n\}$ is uniformly convergent on [0,1].

4. Show that
$$\int_{0}^{1} \log \Gamma(x) dx$$
 is convergent and hence find the value of the integral. 6

5. Prove that
$$\frac{\pi^3}{24\sqrt{2}} < \int_0^{\pi/2} \frac{x^2}{\sin x + \cos x} dx < \frac{\pi^3}{24}$$
.

$$f(x) = 0$$
, when x is irrational or zero

$$=\frac{1}{q}$$
, when $x = \frac{p}{q}$ with HCF $(p, q) = 1$

Examine Riemann integrability of f and find the value of the integral if exists.

7. As an application of Abel's theorem show that $\sum a_n \cdot \sum b_n = \sum c_n$ where $\sum a_n$, $\sum b_n$, 6 $\sum c_n$ are convergent infinite series and $c_n = a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \dots + a_nb_0$.

GROUP-C

Answer any *two* questions
$$12 \times 2 = 24$$

4 + 2

8. (a) Test the convergence of
$$\int_{0}^{1} \frac{dx}{e^{x} - \cos x}$$
 2

- (b) Find the value of *m* for which the integral $\int_{0}^{1} (\log \frac{1}{x})^{m} dx$ converges. 5
- (c) Let $r_1, r_2, r_3 \cdots$ be an enumeration of the set of all rational points in [0, 1] and a sequence of functions $(f_n)_{n \in \mathbb{N}}$ is defined on [0, 1] as follows

$$f_n(x) = \partial, \ x = r_1, r_2, r_3, \cdots r_n$$

= 1, \ x \in [0, 1] \ \ \ \ \ \ r_1, \ r_2, \cdots \ r_n \ \ .

Show that the sequence (f_n) is not uniformly convergent on [0, 1].

9. (a) Test the convergence of
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 7

(b) Show that
$$\int_{2}^{\infty} \frac{\cos x}{\log x}$$
 is conditionally convergent. 5

10.(a) Let $f(x) = x[x], x \in [0, 4]$ Show that *f* is integrable on [0, 4] and $\int_{0}^{4} f(x)dx = 17$.

(b) Test the convergence of
$$\int_{0}^{1} x^{x} dx$$
 4

(c) Using power series expansion of $(1 + x^2)^{-1}$ show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ 4

3

9

- 11.(a) Show that Fourier series of a function *f* may not converge to *f*.
 - (b) Show that the Fourier series $\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{\sin nx}{2n} \frac{\cos nx}{n^2} \right)$ converges to the periodic function f in $(-\pi, \pi)$ where $f(x) = x^2 + x$, for $-\pi < x < \pi$ and $f(x) = \pi^2$ for $x = \pm \pi$.

-×-